

Reg. No.	:		
----------	---	--	--

Name :

II Semester B.Sc. Degree (CBCSS – Supple.) Examination, April 2021 (2014 - 2018 Admission)

COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT-PH: Mathematics for Physics and Electronics – II

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. What is the area of the surface of a solid obtained on revolving the arc of a curve y = f(x) about x-axis intercepted between x = a and x = b?
- 2. What is the value of the integral $\int_0^1 \int_0^1 y \, dy dx$?

 3. If $\begin{vmatrix} 1 & x \\ 2 & 2 \end{vmatrix} = 0$, what is the possible value of x?
- 4. If $\begin{pmatrix} 1 & 2 \\ x & 3 \end{pmatrix}$ is symmetric, what is the value of x?

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Evaluate $\int_0^\infty \frac{dx}{(1+x^2)^4}$.
- 6. Find the area of the cardioid $r = a(1 \cos \theta)$.
- 7. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about the x-axis.
- 8. If A is a 2×2 matrix, show that A + A^T is symmetric.
- 9. If A is an orthogonal matrix, what we can say about its transpose? Justify your answer.
- 10. Row reduce and find the rank of the matrix $A = \begin{bmatrix} 2 & 2 \end{bmatrix}$
- 11. Give a 2×2 matrix with two distinct eigen values. Prove it.

K21U 3611

- 12. Write the matrix $\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$ as a sum of a symmetric matrix R and a skew symmetric matrix S.
- 13. Show that $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ satisfies its characteristic equation (2 x)(1 x) = 0.

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Evaluate $\int_{2}^{\pi/4} (\cos 2\theta)^{3/2} \cos \theta \ d\theta$.

15. Find the area of the loop of the curve $x^5 + y^5 = 5ax^2y^2$.

- 16. The loop of the curve $2ay^2 = x(x a)^2$ revolves about the straight line y = a. Find the volume of the solid generated.
- 17. Evaluate $\int \int xy(x+y)dxdy$ over the area between $y=x^2$ and y=x.
- 18. If A, B are 2×2 matrices of rank 2, show that AB is also of rank 2. Is it true that if A and B are matrices of rank 1, AB is also of rank 1? Justify your answer.
- 19. Prove that the eigen values of a 3×3 upper triangular matrix are the same as its main diagonal elements.

SECTION - D

Answer **any 2** questions from among the questions **20** to **23**. These questions carry **5** marks **each**.

- 20. Find the area between the curve $x(x^2 + y^2) = a(x^2 y^2)$ and its asymptote. Also find the area of its loop.
- 21. Evaluate $\iiint\limits_{V}(2x+y)dxdydz$, where V is the closed region bounded by the cylinder $z=4-x^2$ and the planes x=0, y=0, y=2, z=0.
- 22. Consider the system

$$x + 2y + 3z = 1$$

 $2x - 3y + 4z = 2$
 $4x - 6y + az = 2$

Using row reduction, find for which value of a the system has a unique solution. For which value of a the system has no solution?

23. Prove that $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is orthogonal. Verify that eigen vectors corresponding to different eigen values are orthogonal.

Reg.	No.	:	••••	• •	••	• •		••	•	• •	•		•	•			 •	 •

II Semester B.Sc. Degree (CBCSS – Supple.) Examination, April 2021 (2014-2018 Admission)

COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT-CH : Mathematics for Chemistry – II

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each :

- 1. Evaluate $\int_0^{\frac{\pi}{2}} \cos^8 x dx$.
- 2. Find the surface area of the solid generated by revolving about the x-axis, the curve y = f(x) and two ordinates x = a and x = b.
- 3. Give an example of a lower triangular matrix.
- 4. Evaluate $\begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix}$.

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the value of $\int_0^3 \sqrt{\frac{x^3}{3-x}} dx$.
- 6. Find the whole area included between the curve $x^2y^2 = a^2(y^2 x^2)$ and its asymptotes.
- Evaluate ∫₀² sin⁵xcos⁴xdx.
- 8. Find the area of the surface generated by resolution of an arc of $y = c \cosh \frac{x}{c}$ about the x-axis.
- 9. Evaluate $\int_{0}^{\pi} \int_{0}^{x} \sin y \, dy dx$.
- 10. Find the Jacobian $\frac{\partial (x,y)}{\partial (u,v)}$ where x = u uv and y = uv.
- $\partial (u, v)$ 11. Find the rank and basis for the row space of $A = \begin{bmatrix} 6 & 0 & -3 & 0 \\ 0 & -1 & 0 & 5 \\ 2 & 0 & -1 & 0 \end{bmatrix}$.

K21U 3612

12. Prove that
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 is orthogonal.

13. Given
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
, using Cayley Hamilton theorem find A^2 .

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Find the whole length of the curve $x^2(a^2 x^2) = 8a^2y^2$.
- 15. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about the x-axis.
- $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$ about the A axis.

 16. Using Gauss-Jordan elimination, find the inverse of $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$.
- 17. Using Cramer's rule, solve 2x y = 5.15, 3x + 9y = 6.15.
- 18. Identify the conic section is given by the quadratic form $Q=3x_1^2+22x_1x_2+3x_2^2=0 \cdot$
- 19. Given $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, using Cayley Hamilton theorem find A^3 .

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Find the intrinsic equation of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, when S is measured from the cusp on the x-axis.
- 21. Find the volume of the solid obtained by revolving $r^2 = a^2 \cos 2\theta$ about the initial line.
- 22. Solve the system of equations :

$$3x - 2y + z = 13$$

 $-2x + y + 4z = 11$
 $x + 4y - 5z = -31$.

23. Diagonalize
$$A = \begin{bmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$$
.

12/33

K22U 1294

Reg. No. :

Name:

II Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2022 (2019 Admission Onwards)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 2C02 MAT-PH: Mathematics for Physics – II

Time: 3 Hours

Max. Marks: 40

UNIT - I

Short answer type. Answer any 4 questions.

1. Find
$$\frac{\partial z}{\partial x}$$
 if $z = \cos(x^3y) + 2x^2y^2$.

- 2. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.
- 3. Evaluate $\int_0^{\frac{\pi}{2}} \sin x \cos x \, dx$.
- 4. Find the area bounded by $y = 2x^3$, x axis and the line x = 3.
- 5. State Cayley Hamilton theorem.

 $(4 \times 1 = 4)$

Energy Continue of the state of

Short essay type. Answer any 7 questions.

6. Evaluate
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x+y}$$
.

- Evaluate ∫ cos³x dx.
- 8. If $u = x^3y^4$, $x = t^3$, y = 2t, find $\frac{du}{dt}$.
- 9. Evaluate $\int_0^1 \frac{2x-4}{\sqrt{1+x^2}} dx$.

- 10. Evaluate ∫ cos⁴x sin³x dx.
- 11. Write the reduction formula for ∫ tanⁿx dx.
- 12. Find the area between y = 4x and $y = x^2$.
- 13. Find the volume of the solid generated by revolving $y = x^{\frac{1}{2}}$, $0 \le x \le 4$ about X axis.
- 14. Find the eigen value of $\begin{bmatrix} 3 & 3 \\ 4 & 1 \end{bmatrix}$.
- 15. Reduce the matrix $A = \begin{bmatrix} 2 & 5 \\ 0 & 6 \end{bmatrix}$ to the diagonal form.
- 16. Reduce the quadratic form 5xy + 2yz + zx into canonical form.

 $(7 \times 2 = 14)$

UNIT - III

Essay type. Answer any 4 questions.

17. If
$$u = \frac{x}{x+z} + \frac{y}{y+x} + \frac{z}{z+y}$$
, find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.

- 18. Find the value of $\frac{du}{dt}$ given that u = y 2ax + 2, $x = at^3$, y = at.
- 19. Evaluate ∫ sec⁴x dx.
- 20. Find the area of surface generated by revolving $y = x^2$, $0 \le x \le 3$ about X axis.
- 21. Find the length of the cardioid $r = 2 3 \cos \theta$.
- 22. Find the eigen vector of $A = \begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix}$.
- 23. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. $(4 \times 3 = 12)$

UNIT - IV

Long essay type. Answer any 2 questions.

- 24. Find $\int_0^{\pi/2} x \sin^6 x \cos^4 x \, dx$.
- 25. If $\phi(n) = \int_0^{\pi/4} \tan^n x \, dx$, show that $\phi(n) + \phi(n-2) = \frac{1}{n-1}$ and deduce the value of $\phi(5)$.
- 26. Find the area of the region in the plane enclosed by the cardioid $r = 2(1 \cos\theta)$.
- 27. Reduce the quadratic form $2x^2 + 4y^2 + 2z^2 5yz + 4zx 3xy$ to the canonical form and specify the matrix of transformation. (2×5=10)

Reg. No. :

II Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/
Supplementary/Improvement) Examination, April 2022
(2019 Admission Onwards)
COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

2C02 MAT - CH : Mathematics for Chemistry - II

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any 4 questions.

 $(1 \times 4 = 4)$

- 1. Let $u(x, y) = \frac{1}{x^2 + xy + y^2}$. Write the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
- 2. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{3} x \, dx$. Bullet obtained a substitution of the problem of th
- 3. Graph the set of points whose polar co-ordinates satisfy $-3 \le r \le 2$ and $\theta = \frac{\pi}{4}$.
- 4. Find the value of the integral $\int_{0}^{1} \int_{1}^{2} \int_{0}^{3} 4 dx dy dz$.
- 5. If λ is an eigenvalue of the matrix A, prove that λ^2 is an eigenvalue of A^2 .

PART – B

Answer any 7 questions.

 $(2 \times 7 = 14)$

- 6. Find the limit of $\frac{x(y-1)}{y(x-1)}$ when x and y tends to 1, if it exists.
- 7. If $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t$ sint and $z = e^t$ cost, prove that $\frac{du}{dt} = 4e^{2t}$.

K22U 1295

-2-

- 8. Show that $\int_{0}^{\pi} \sin^{7}(x/2) dx = \frac{32}{35}$.
- 9. Evaluate $\int_{0}^{\pi} \sin^{6} \theta \cdot \cos^{4} \theta d\theta$.
- 10. Find the area of the region bounded by the parabola $y = 2 x^2$ and the line y = -x.
- 11. Find all polar co-ordinates of the point $P(3, \pi/6)$.
- 12. Find the perimeter of the circle $x^2 + y^2 = a^2$ using polar co-ordinates.
- 13. Find the volume of the region bounded by the elliptical paraboloid $z = 10 + x^2 + 3y^2$ and below the rectangle R : $0 \le x \le 1$, $0 \le y \le 2$.
- 14. Find the average value of f (x, y) = $x\cos(xy)$ over the rectangle R: $0 \le x \le \pi$, $0 \le y \le 1$.
- 15. Find all characteristic values of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$. Hence find the characteristic vector associated with any one characteristic value.

Answer any 4 questions.

(3×4=12)

- 16. If $u = \sin^{-1}\left(\frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$, show that $\frac{\partial u}{\partial x} = -\frac{y}{x}\frac{\partial u}{\partial y}$.
- 17. If $u = e^{x^2 + y^2}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$.
- 18. Using reduction formula, evaluate ∫tan⁴ x dx.
- 19. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} dx$.
- 20. Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.

- 21. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find its inverse.
- 22. Find the nature of the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$.

PART - D

Answer any 2 questions.

 $(5 \times 2 = 10)$

- 23. If $u = x\log(xy)$, where $x^3 + y^3 + 3xy = 1$, find $\frac{dy}{dx}$ and hence find $\frac{du}{dx}$.
- 24. Evaluate $\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx$.
- 25. Find the area of the region R enclosed by the parabola $y = x^2$ and the line y = x + 2 using double integrals. Graph the required area.
- 26. Find the characteristic values and characteristic vectors of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}.$$